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Abstract

Completed design and implementation are often regarded
as pre-requisites of any verification. While recent devel-
opment methods establish testability as a design criterion,
there is no corresponding design support for other verifi-
cation methods like model checking and static analysis.
Since these methods have inherent scalability problems,
their application becomes more difficult where it is most
needed - for complex systems.

Our Design-for-Verification (D4V) approach attempts
to close this gap using a variety of techniques, such as
design patterns, APIs and source annotations. This pa-
per presents a overview of D4V, and introduces Dynamic
Assertions as one of the proposed D4V techniques.

Dynamic Assertions are dedicated, non-intrusive check
objects that are dynamically activated, evaluated and de-
activated via assertions of their target objects. Since these
check objects can have their own state, they can be used to
verify a broad range of properties. Properties can be ex-
pressed in the target programming language, and checked
in a testing environment. In addition, Dynamic Asser-
tions can be configured via call contexts, making them
suitable for connector-specific verification of component
based systems.

1 Introduction

Verification traditionally has been regarded as a last pre-
delivery development phase to show that a certain sys-
tem implementation meets its requirements specifications.
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This perspective can fall short of practical system devel-
opment needs in two ways:

(A) Development process related - Requirement spec-
ifications of complex systems are often incomplete, re-
sulting in a need to validate the system - or artifacts
thereof - as soon as possible. If validation cannot be
started before most of the system has been implemented
and verified, such a “proven to be correct” implementa-
tion of the wrong requirements might not only be useless,
but is also the most expensive way to fail.

(B) Verification technology related - The more com-
plex a system is, the harder it usually is to find its malfunc-
tions. Due to potentially large input data sets and hard-to-
control environment dependencies (e.g., thread schedul-
ing), conventional testing can often only achieve limited
confidence in correct system behavior. Formal, automated
verification techniques like software model checking [4]
can be useful to overcome this restriction, but are usu-
ally exponential with respect to system complexity. If
these verification tools cannot be applied before the sys-
tem reaches a critical level of complexity, they are not
applicable at all without expensive and error-prone mod-
eling.

The consequence of the first deficiency is that more
contemporary development process models [8] and
methodologies [5] put the emphasis on incremental devel-
opment with rapid turn-around, to achieve user feedback
based on design-simulations and runnable artifacts (tests)
early in the development process. While this implicitly re-
quires a certain modularity, e.g. to enable unit tests, there
are usually no verification-specific design guidelines or
rules to directly support formal verification methods.

So far, most of the effort to overcome verification
technology related deficiencies has been spent on im-
proving verification tools, but the achieved gains have
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been nullified by rapidly growing system complexities,
due to increased computational resources and widespread
use of ever growing frameworks. For example, the size of
the Java system framework libraries has been expanded
by more than a factor of 20 since its first release in 1997.
It therefore seems unlikely that a tool-centric verification
approach alone will succeed in conquering complexity.

The importance of a suitable design is widely ac-
cepted in testing, e.g., to ensure minimal observable error
paths, but there still is a lack of specific verification-
oriented design measures.
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This is all the more unsatisfactory since it is well known
that software systems usually have a large state space, and
even small program changes can result in huge differences
regarding the verification-relevant number of states.

2 D4V

Our Design for Verification (D4V) approach tries to over-
come the scalability problems of formal verification meth-
ods by turning verifiability into a explicit design criterion.
From a verification point of view, systems are no longer
regarded as black boxes, but are assembled from, and an-
notated with, D4V specific components based on proper-
ties that later-on can be checked.

A major hypothesis of D4V is that the same design
principles that are considered to be best practices from
a general software engineering perspective (e.g. usage of
Design Patterns [1]) can also be successfully employed
for automated verification. Separation of concerns and
model based abstractions work well for humans and ma-
chines.

There are three major categories of D4V techniques.

2.1 General State Space Reduction

Measures in this category do not change the functionality
of the system, but try to implement it in a way that

• minimizes accidental complexity [2]

• enables the use of existing verification tools
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So far, there are two sub-categories, both aiming at im-
proved software model checking capabilities.

2.1.1 Reduction of Concurrency

Many system designs use concurrency to separate seem-
ingly independent computations, just to find out in the im-
plementation phase (or subsequent extensions) that some
shared resources do require synchronization (e.g. global
services like memory allocation). This overlayed syn-
chronization is often error prone (liveness and safety
properties), and can dramatically increase the number of
relevant states for model checking, which ideally has to
consider all potential thread interleavings.

Certain standard design patterns can be used to central-
ize synchronization in library components, and eliminate
the need for application specific inter-thread synchroniza-
tion (e.g. message passing via centralized queues). In ad-
dition, these patterns can sequentialize processing while
maintaining good code separation, and therefore signifi-
cantly reduce the state space a model checker has to look
at.

2.1.2 State Space Closing Abstractions

The explicit usage of counters and time values in highly
repetitive systems imposes a serious problem for software
model checkers. Since these variable values can differ
for each cycle, the state space is effectively multiplied by
the maximum values of the corresponding variable types,
in all likeliness exceeding the memory constraints of the
checker if defects cannot be found in early cycles.
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D4V addresses this problem by a set of state closing
abstraction constructs. Typically, counters and timers are
used to check for value differences (e.g. as a progress
monitor), or to produce logging output. From a model
checkers perspective, the first usage can be abstracted
into a simple non-deterministic choice (difference lower
or bigger than a certain threshold), the second one usually
can be ignored. By using the D4V abstractions instead of
primitive type variables, the implementation can be eas-
ily exchanged between runtime/testing- and verification-
environments.

2.2 Design Model Preservation and Extrac-
tion

Design and implementation are always based on a num-
ber of models. Nobody starts to write code for complex
systems without an abstraction of the process model, po-
tential extensions, or underlying data models.
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Unfortunately, these models are often either informal,
not kept up-to-date, or simply lost in subsequent imple-
mentation details, requiring expensive and lossy restora-
tion from application sources during system verification.
D4V tries to avoid this problem by means of preserving
the relevant specifications “in-source”, using code anno-
tations or specific APIs. There are three major models in
the D4V context.

2.2.1 Check Points

This model refers to the correctness aspect of a system,
and uses annotations and standard assertions for its im-
plementation to mark locations where the system needs
to be in a consistent state. This is based on the obser-
vation that - with respect to most functional properties -
the state space from a software model checkers point of
view mainly consists of temporary states, and only cer-
tain fixpoints need to be verified (e.g., before results are

distributed). Check Points mark these locations, specify
the relevant assertions, and link them back to correspond-
ing requirements.

2.2.2 Control Points

Control Points capture the dynamic process model of con-
current systems, with their major synchronization and
communication dependencies. They can be used to hint
software model checkers with potential atomic sections
for partial order reduction (i.e. reducing the number
of thread interleavings), defect-type- specific scheduling
strategies, or to generate simplified process models (like
labeled transition systems) for use in dedicated tools (e.g.
LTSA [6]). Control Points can either be specified with
special APIs, thereby avoiding redundancy and inconsis-
tency due to inheritance anomaly, or with code annota-
tions providing a certain level of intended redundancy for
consistency checks.

2.2.3 Extension Points

During their lifecycle, complex systems usually are
subject to significant modifications and extensions. A
typical effect is that at some point functional extensions
break the original design, violating properties that did
hold in previous versions. Therefore, a major task in
the specification and design phase is to anticipate future
extensions that should be supported, and to mark the
corresponding programming constructs (like classes,
interfaces, methods, delegation objects) as Extension
Points. This augments the inheritance control features
of the programming language (like access attributes)
by semantically grouping related elements according to
major extension concepts, linking them back to their
specifications, and enabling consistency checks without
the need for full fledged static analysis.

It is important to note that model extraction differs from
other D4V categories in that tool generated results (check-
able model instances) are not functionally equivalent to
the original system, they capture only simplified aspects
of it. This is most obvious for the Extension Points model,
which does not refer to any runtime behavior and is only
used to group and link potential source modifications.
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2.3 Property Specific State Space Partition-
ing

In addition to reducing the whole state space, or trans-
forming it into simplified models, a very promising ap-
proach is to structure and compose the system so that
properties can be checked in subsets of the state space.
This can be done in two different ways.

2.3.1 Structure Based Properties

This approach uses specialized design pattern instances
that guarantee certain key properties if their correspond-
ing (formal) usage rules are fulfilled, which is mostly
achieved by information hiding. Patterns are chosen from
application domain specific libraries based on their prop-
erties, and users can get feedback regarding verifiable sys-
tem aspects even before the implementation is started.
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Since many design patterns work by means of delega-
tion and abstract interfaces, usage checks will mainly con-
sist of specialized static analysis of call trees inside of in-
terface functions (e.g. making sure certain functions are
not used). We assume structure based properties will be
the most important D4V measure.

2.3.2 State Annotation

While structure-based properties use specific designs to
modify and constrain the verification-relevant state space,
this approach starts with an existing design, explicitly
identifying and linking states that have to be checked in
the context of a certain property. In contrast to local asser-
tion expressions, checks can carry information between
the marked states, enabling the use of simple automatons
to keep track of evaluation results (e.g. for protocol veri-
fication).
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We start with a check object, and then attach it to rele-
vant program states. Like Check Points, this mainly aims
at functional properties that should be verifiable in testing
and model checking environments.

In the second part of this paper, we present Dynamic
Assertions as one example of this D4V category.

3 Dynamic Assertions

The basic idea behind this state annotation technique is to
use the assertion mechanism of a programming language
to delegate property verification in specific states to ded-
icated, dynamically created check objects. The goal is to
ease property specification and shrink the property rele-
vant state space. The requirements are that checks can be

• utilized on a per-object basis

• explicitly enabled and disabled in specific states

• formulated with programming language expressions,
and a low level of theory- or implementation- in-
flicted overhead

• conditionally compiled (i.e., do not introduce pro-
duction system runtime overhead or other side ef-
fects)

3.1 Example

While dynamic assertions are mostly programming lan-
guage and runtime-environment independent, there are
several levels of support that can be used to implement
them. The following examples uses a source code prepro-
cessor (iContract [3]) to implement pre-, post-conditions
and invariants [7] for the Java programming language.

Assuming that instances of class A can be used in a va-
riety of contexts, we might not be able to specify usage-
specific properties as invariants of A.
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/** @invariant DynAssertion.check(this) */
class A {

int x; ..
public void setX (int x) { this.x = x; }

}

This defines a class that automatically evaluates the
expression DynAssertion.check(this) as a invariant
check, i.e. before and after every method invocation on
an A instance. The instrumented code generated by the
programming-by-contract preprocessor might look like

..
public void setX (int x) {

if(!DynAssertion.check(this))
throw new Exception("precond");

..
}

DynAssertion refers to a library class that is used to manage
check objects

abstract class DynAssertion {
static Map assertions;

public static boolean check (Object o){
Object da = assertions.get(o);
if (da != null)

return ((DynAssertion)da).check();
else return true;

}

public static add (Object o,
DynAssertion da){

..assertions.put(o,da);
}

public boolean check () {return true;}
}

The following class B represents one of the users of A,
whose instances store a (non-aggregate) reference to an A
object that - potentially - can be modified outside the class
B context.

Our example property is

between the execution start of f() and the execution
end of g() of a B instance, both y and the related a.x
field values have to be greater than zero

which is translated into a DynAssertion object that is
created and activated (linked to target objects a and b)
as a pre-condition of method f(), and removed as a post-
condition of method g().

/** @invariant DynAssertion.check(this) */
class B {

A a; .. int y;
B (A a) { this.a = a; }

/** @pre DynAssertion.add( this, a,
* new DynAssertion ("myCheck") {
* public check () {
* return (y > 0)&&(a.getX() > 0);
* }
* })
*/

void f (..) {..}

/** @post DynAssertion.remove(this,a,
* "myCheck")
*/

void g (..) {..}
...

}

The following code fragment represents a possible usage
scenario of this dynamic assertion

class C {
static A a = new A(); // not aware of

// being used by ’B’
void foo() {
B b = new B(a);

b.f(); // DA activated
...
a.setX(-1);// violates property
...
b.g(); // DA removed
...

}
}

While the semantics of this example are certainly artifi-
cial, it is important to note that checks are only performed
on the two involved objects (a and b), only within the
specified range of states (between f() and g() execu-
tions), and only at states that potentially can violate the
property (method calls on the two involved objects).

3.2 Dynamic Assertions With State

What really sets dynamic assertions apart from normal as-
sertions is the fact that they are objects, being able to store
their own state. This can be especially powerful if it is
combined with execution environment features.

A simple, yet practical example is a special dynamic
assertion class to verify (partial) method call protocols in
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Java. Assume that a certain class A has a lot of methods
that can be called in any order, except that

an open() call cannot directly or indirectly be followed
by second open() call before close() was called

We can implement this by means of a DynAssertion de-
rived class ProtocolAssertion, which encapsulates a
pattern matcher that keeps track of previous check eval-
uations (ProtocolAssertion uses the Java 1.4.1 stack
trace support to identify method calls)

/** @invariant DynAssertion.check(this) */
class A {

/** @pre DynAssertion.add( this,
* new ProtocolAssertion("open-close"
* "{~open} close"))
*/

void open () {..}
void close () {..}
void foo () {..}
...

}

Once the pattern has been successfully matched, the
ProtocolAssertion instance can automatically remove
(de-activate) itself. The property specification is kept
close to the location it refers to (execution of open()
method), and does not require any information that is not
readily available in its own context (e.g., no complete state
model of all A instances). Since the assertion object is as-
sociated with a specific target object, it can co-exist with
other dynamic assertions.

This example shows how dynamic assertion state can
be used for non-trivial safety properties (“no state with
consecutive open() calls”). By means of a global as-
sertion registry and some program fixpoints (i.e., states
which are known to be reached), we can also implement
liveness properties like

any postEvent() execution is eventually followed by its
corresponding processEvent() execution

To implement this property, we use the assertion reg-
istry as the check memory, not the assertion object it-
self, and associate the assertion objects with their cor-
responding event objects, checking the assertion registry
for not-yet-removed objects as a post-condition of the
dispatcherLoop() execution.

class EventQueue {
/** @pre DynAssertion.add( e,
* new DynAssertion("posted"){})
*/

void postEvent (Event e) {..}

/** @post DynAssertion.remove(e,"posted")
*/

void processEvent (Event e) {..}

/** @post DynAssertion.hasNo(Event.class,
* "posted")
*/

void dispatcherLoop () {
..
while (!done){

Event e = queue.getNextEvent();
..
processEvent(e);

}
/** @controlpoint exitDispatcherLoop */

}
...

}

This property could certainly better be verified by means
of a D4V design pattern (i.e. as a structure based prop-
erty), but demonstrates how dynamic assertions can be
used in a design that is not property-aware at all. It
should be noted that the property would also require ap-
plication storage (i.e. additional state) if we use a tem-
poral logic formula like �(postEvent ⇒ ♦processEvent)
since we have to reason about the (abstract) state of Event
objects, not the EventQueue (processEvent() calls for
non-posted events do not count).

While suspicious from a model checking point of view,
the halting-problem related dependency on program fix-
points is of less concern in a practical context. Liveness
checks on application specific fixpoints (Control Points
from a D4V perspective) are usually first class proper-
ties themselves (indicated by the @controlpoint annota-
tion in the example). In addition, most runtime envi-
ronments provide critical system-level functionality re-
lated fixpoints like exit hooks and finalizers that have to
be guaranteed in order to assume any deterministic sys-
tem behavior. In a model checker environment, we could
also mark certain states in which the assertion registry is
checked during a backtrack operation (i.e., if the model
checker has explored the whole state space underneath
this point).
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3.3 Application

The mechanism integrates seamlessly with standard asser-
tions and programming-by-contract support. It does not
require any specific runtime environment, and therefore
can be used for normal testing. However, assuming that a
property violation during a checked sequence is inflicted
in a concurrent context (e.g., by calling a.setX(-1) from
another thread), it is obvious that conventional testing
might not be able to detect all potential violations. In this
case, we can use a software model checking environment
like Java Pathfinder [4], to systematically verify many - if
not all - possible execution paths.

The model checker can treat dynamic assertions like
normal application code, and only has to check for stan-
dard program exceptions. While this avoids overhead
within the model checker, which does not have to be
aware of how properties are tested, it also increases the
state space of the application. This is a primary rea-
son why it is important to constrain the lifetime of check
objects, and to minimize the number of check- relevant
states.

On the other hand, if a model checker is able to inter-
cept dynamic assertion calls, it can use the activation, de-
activation and target object information as hints of how to
further reduce the application state space (e.g. minimiz-
ing the number of thread interleavings by means of partial
order reduction). The capability to intercept these calls
has been implemented in Java Pathfinder as the generic
Model-Java-Interface (MJI).

Working on a per-instance basis in the context of
method invocations, dynamic assertions represent a run-
time mechanism that naturally lends itself to component
based systems, which can be characterized by

• a high degree of context specific, un-anticipated re-
use of components

• a low degree of static usage/compatibility checks
(component sources might not be available at all)

Reasoning about components depends on their external
interface, which is mapped into specific methods of the
component implementation. These methods could be
used as the injection points of connector-specific asser-
tions, thus enabling a “wiring”-based verification.

/** @invariant DynAssertion.check(this) */
class SomeComponent {

/** @pre DynAssertion.add( this,
* Composition.getConnectorAssertion())
*/

void externalFunction () {..}
...

}

This uses a verification-specific repository class
Composition to look up assertion objects via caller/callee
(connector) information provided by the runtime environ-
ment.

3.4 Caveats

Dynamic assertions do have their caveats. From a users
perspective, the most obvious one is that dynamic asser-
tions should be free of side effects with respect to normal
program control flow and data values. The user also has
to be aware of that delegating the property verification to
dedicated objects is only efficient if there are relatively
few target objects that have to be checked in a limited
number of states. If a property has to be checked for all
instances of a certain type in a large number of states,
inlined assertions, contracts, or model-checking specific
verification methods like temporal logic should be pre-
ferred.

With respect to the implementation of dynamic as-
sertion infrastructure, it is important to avoid memory
leaks due to the linkage between assertion- and target-
objects, especially since assertion objects can be stored
in a global repository (i.e. are reachable from the root
set). This can be achieved by weak references, which
are available in most contemporary programming envi-
ronments with automatic memory management (like Java
and C#). Another important implementation aspect is to
avoid inheritance anomaly. If the invariant or pre- and
post- condition instrumentation is not inheritance aware,
or dynamic assertions are created in free assertion expres-
sions, derived classes can easily loose property-relevant
states, i.e. inheritance can break the assumed correctness
model. This can be prevented by means of using exist-
ing programming-by-contract systems [3]with their well-
defined inheritance behavior (weakening pre-conditions,
strengthening post-conditions).

7



4 Conclusions and Future Work

In this paper, we have sketched out motivation and scope
of D4V as a collection of tools and techniques to enable
verification of complex systems, and presented Dynamic
Assertions as one example technique from its repertoire.

The wide range of potential D4V categories makes it
obvious that future D4V work will be mainly driven by the
needs of real world test-cases, and influenced by current
and planned capabilities of our verification toolset [9].

The next step will be the demonstration of a D4V
specific design pattern, using techniques like dynamic
assertions and model preservation/extraction for its
implementation. This will be gradually extended into
an application-domain specific pattern system, reflecting
our belief that verifiability should be considered as an
integral part of the design of complex systems.
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